Intro. to JW Solution to Kitaev Honeycomb Model

A Summary of PHYS497 Progress

Ibraheem F. Al-Yousef
Department of Physics, KFUPM

Kitaev's Honeycomb Hamiltonian

$$
H=-J_{x} \sum_{x-l i n k s} \sigma_{j}^{x} \sigma_{k}^{x}-J_{y} \sum_{y-\operatorname{links}} \sigma_{j}^{y} \sigma_{k}^{y}-J_{z} \sum_{z-l i n k s} \sigma_{j}^{z} \sigma_{k}^{z}
$$

Deforming The Lattice

Threading The Lattice

Jordan-Wigner Definition

$$
\begin{gathered}
\sigma_{i j}^{+}=2\left[\prod_{j^{\prime}<j} \prod_{i^{\prime}} \sigma_{i^{\prime} j^{\prime}}^{z} \prod_{i^{\prime}<i}^{\prod_{1 D}} \sigma_{i^{\prime} j}^{z} c_{i j}^{\dagger}\right. \\
\sigma_{i j}^{z}=2 c_{i j}^{\dagger} c_{i j}-1 \\
\sigma_{i j}^{x}=\frac{1}{2}\left(\sigma_{i j}^{+}+\sigma_{i j}^{-}\right) \\
\sigma_{i j}^{y}=\frac{2}{2}\left(\sigma_{i j}^{-}-\sigma_{i j}^{+}\right)
\end{gathered}
$$

Example

We will now transform one part of the Hamiltonian as an example: Using:

$$
\begin{gathered}
\sigma_{i j}^{x}=\frac{1}{2}\left(\sigma_{i j}^{+}+\sigma_{i j}^{-}\right) \\
\sigma_{i, j}^{x} \sigma_{i+1, j}^{x} \Longrightarrow \frac{1}{4}\left(\sigma_{i, j}^{+} \sigma_{i+1, j}^{+}+\sigma_{i, j}^{+} \sigma_{i+1, j}^{-}+\sigma_{i, j}^{-} \sigma_{i+1, j}^{+}+\sigma_{i, j}^{-} \sigma_{i+1, j}^{-}\right)
\end{gathered}
$$

Employing JW transformation:

$$
\begin{gathered}
\Longrightarrow c_{i, j}^{\dagger} c_{i+1, j}^{\dagger}+c_{i, j}^{\dagger} c_{i+1, j}-c_{i, j} c_{i+1, j}^{\dagger}-c_{i, j} c_{i+1, j} \\
\Longrightarrow\left(c_{i, j}^{\dagger}-c_{i, j}\right)\left(c_{i+1, j}^{\dagger}+c_{i+1, j}\right)
\end{gathered}
$$

After JW

$$
\begin{aligned}
& \left(c_{i, j}^{\dagger}-c_{i, j}\right)\left(c_{i+1, j}^{\dagger}+c_{i+1, j}\right) \Longrightarrow\left(c-c^{\dagger}\right)_{w}\left(c^{\dagger}+c\right)_{b} \\
& H=J_{x} \sum_{x-\operatorname{links}}\left(c-c^{\dagger}\right)_{w}\left(c^{\dagger}+c\right)_{b}-J_{y} \sum_{y-\operatorname{links}}\left(c^{\dagger}+c\right)_{b}\left(c-c^{\dagger}\right)_{w} \\
& -J_{z} \sum_{z-\operatorname{lin} k s}\left(2 c^{\dagger} c-1\right)_{b}\left(2 c^{\dagger} c-1\right)_{w}
\end{aligned}
$$

Quartic terms $\Longrightarrow c_{b}^{\dagger} c_{c} c_{w}^{\dagger} c_{w}$

Majorana Fermions

Majorana fermions obey these relations:

$$
\left\{A_{i}, A_{j}\right\}=\delta_{i j} ; \quad A^{\dagger}=A ; \quad A^{2}=1
$$

Defining new Majorana operators at each site:

$$
\begin{array}{rlr}
A_{w} \equiv \frac{\left(c-c^{\dagger}\right)_{w}}{i} ; & B_{w} \equiv\left(c^{\dagger}+c\right)_{w} \\
A_{b} \equiv\left(c^{\dagger}+c\right)_{b} ; & B_{b} \equiv \frac{\left(c-c^{\dagger}\right)_{b}}{i}
\end{array}
$$

The Hamiltonian reads:

$$
H=-i J_{x} \sum_{x-\text { links }} A_{w} A_{b}+i J_{y} \sum_{y-\text { links }} A_{b} A_{w}+J_{z} \sum_{z-\text { links }} B_{b} B_{w} A_{b} A_{w}
$$

Conserved Quantities

$$
H=-i J_{x} \sum_{x-\text { links }} A_{w} A_{b}+i J_{y} \sum_{y-\text { links }} A_{b} A_{w}+J_{z} \sum_{z-\text { links }} B_{b} B_{w} A_{b} A_{w}
$$

The term $B_{b} B_{w} A_{b} A_{w}$ is not quadratic, but luckily, there is a conserved quantity α_{r} :

$$
\alpha_{r} \equiv i B_{b} B_{w}
$$

Since $B_{b / w}$ is hermitian, and $B_{b / w}^{2}=1$, then $B_{b / w}$ will have eigenvalues of ± 1. Moreover, $B_{b / w}$ operators anti-commute with $A_{b / w}$ operators, and consequently, $\alpha_{r} / i=B_{b / w} B_{b / w}$ will commute with $A_{b / w}$ operators.

$$
\begin{gathered}
\left\{B_{i}, A_{j}\right\}=0 ; \quad\left[B_{i} B_{j}, A_{k}\right]=0 ; \quad i j k \in\{b, w\} \\
H=-i J_{x} \sum_{x-\text { links }} A_{w} A_{b}+i J_{y} \sum_{y-\text { links }} A_{b} A_{w}-i J_{z} \sum_{z-\text { links }} \alpha_{r} A_{b} A_{w}
\end{gathered}
$$

Spinon Operators

We will replace α_{r} quantities by their eigenvalue +1 which minimizes energy and therefore corresponds to the ground state configuration. Next, we introduce a new spinon excitation fermionic operator which lives on the middle of z-bonds, defined as:

$$
\begin{aligned}
& d \equiv \frac{A_{w}+i A_{b}}{2} ; \quad d^{\dagger} \equiv \frac{A_{w}-i A_{b}}{2} \\
& H
\end{aligned}
$$

Fourier Transform

Now we apply a Fourier transform in 2-D, which is slightly different:

$$
d_{\mathbf{r}}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\mathbf{q}} d_{\mathbf{q}}^{\dagger} e^{i \mathbf{q} \cdot \mathbf{r}} ; \quad d_{\mathbf{r}}=\frac{1}{\sqrt{N}} \sum_{\mathbf{q}} d_{\mathbf{q}} e^{-i \mathbf{q} \cdot \mathbf{r}}
$$

The identity becomes:

$$
\sum_{\mathbf{r}} e^{i\left(\mathbf{q}-\mathbf{q}^{\prime}\right) \cdot \mathbf{r}}=N \delta_{\mathbf{q q}^{\prime}}
$$

Summing over positive modes, the Hamiltonian will read:

$$
\begin{aligned}
H & =\sum_{q>0}\left[\epsilon_{q}\left(d_{q}^{\dagger} d_{q}-d_{-q} d_{-q}^{\dagger}\right)+i \Delta_{q}\left(d_{q}^{\dagger} d_{-q}^{\dagger}-d_{-q} d_{q}\right)\right] \\
& =\sum_{q>0}\left[\begin{array}{ll}
d_{q}^{\dagger} & d_{-q}
\end{array}\right]\left[\begin{array}{cc}
\epsilon_{q} & i \Delta_{q} \\
-i \Delta_{q} & -\epsilon_{q}
\end{array}\right]\left[\begin{array}{c}
d_{q} \\
d_{-q}^{\dagger}
\end{array}\right]
\end{aligned}
$$

Fourier Transform

Here, we have used the short-hand notation.

$$
\begin{gathered}
\sum_{q} \Longrightarrow \sum_{q_{x}} \sum_{q_{y}} ; \quad \sum_{q>0} \Longrightarrow \sum_{q_{x}>0} \sum_{q_{y}>0} \\
\epsilon_{q}=2 J_{z}-2 J_{x} \cos q_{x}-2 J_{y} \cos q_{y} \\
\Delta_{q}=2 J_{x} \sin q_{x}+2 J_{y} \sin q_{y} \\
q_{i} \equiv \mathbf{q} \cdot \hat{e_{i}} ; \quad i \in\{x, y\}
\end{gathered}
$$

Bogoliubov Diagonalization

We now consider a simple 2×2 Hamiltonian of the form:

$$
H=\sum_{q}\left[\begin{array}{ll}
c_{q}^{\dagger} & c_{-q}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
\alpha & -i \beta \\
i \beta & -\alpha
\end{array}\right]}_{2 \times 2}\left[\begin{array}{c}
c_{q} \\
c_{-q}^{\dagger}
\end{array}\right]
$$

Then eigenvalues are given as:

$$
\left|H-\omega_{q} \mathbb{I}\right|=\left|\begin{array}{cc}
\alpha-\omega_{q} & -i \beta \\
i \beta & -\alpha-\omega_{q}
\end{array}\right|=0 \Longrightarrow \omega_{q}= \pm \sqrt{\alpha^{2}+\beta^{2}}
$$

The unitary matrix U is:

$$
U=\left[\begin{array}{cc}
\mid & \mid \\
V_{1} & V_{2} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
u_{q} & i v_{q} \\
i v_{q} & u_{q}
\end{array}\right] ; \quad u_{q}=\frac{\alpha+\omega_{q}}{\sqrt{\left(\alpha+\omega_{q}\right)^{2}+\beta^{2}}} ; \quad v_{q}=\frac{\beta}{\sqrt{\left(\alpha+\omega_{q}\right)^{2}+\beta^{2}}}
$$

Diagonalized Hamiltonian

$$
H=\sum_{q} \underbrace{\left[\begin{array}{cc}
d_{q}^{\dagger} & d_{-q}
\end{array}\right] U^{\dagger}}_{\left[\begin{array}{ll}
\eta_{q}^{\dagger} & \eta_{-q}
\end{array}\right]} \underbrace{U h U^{\dagger}}_{D} \underbrace{U\left[\begin{array}{c}
d_{q} \\
d_{-q}^{\dagger}
\end{array}\right]}_{\left[\begin{array}{ll}
\eta_{q} & \eta_{-q}^{\dagger}
\end{array}\right]^{T}}
$$

The result is this following Hamiltonian in its eigenspace:

$$
\begin{gathered}
H=\sum_{q} \omega_{q} \eta_{q}^{\dagger} \eta_{q}+E_{0} \\
E_{0}=-\frac{1}{2} \sum_{q} \omega_{q} ; \quad \omega_{q}=\sqrt{\epsilon_{q}^{2}+\Delta_{q}^{2}}
\end{gathered}
$$

Extended Kitaev Honeycomb Model

An extended Kitaev honeycomb model can be written as:

$$
\begin{gathered}
H=H_{1}+H_{2} \\
H_{2}=-i K_{2} \sum_{(\alpha \beta \gamma)} \sum_{\langle j k l\rangle_{\alpha \beta}} \epsilon_{(\alpha \beta \gamma)}\left(\sigma_{j}^{\alpha} \sigma_{k}^{\alpha}\right)\left(\sigma_{k}^{\beta} \sigma_{l}^{\beta}\right)=K_{2} \sum_{(\alpha \beta \gamma)} \sum_{\langle j k l\rangle_{\alpha \beta}} \sigma_{j}^{\alpha} \sigma_{k}^{\gamma} \sigma_{l}^{\beta}
\end{gathered}
$$

Here, H_{1} is the original Kitaev honeycomb model, H_{2} includes the NNN interactions, K_{2} is the NNN Kitaev coupling, $\epsilon_{(\alpha \beta \gamma)}$ is Levi-Civita symbol, and $(\alpha \beta \gamma)$ is a general permutation of $(x y z)$.

Extended Kitaev Honeycomb Model

We define $\langle j k l\rangle_{\alpha \beta}$ to be the path consisting of the two bonds $\langle j k\rangle_{\alpha}$ and $\langle k l\rangle_{\beta}$

Figure: Representative of the path $\langle j k l\rangle_{y x}$ associated with the K_{2} in H

Research Questions

\square Will the model still be exactly solvable?

- How does this impact thermal conductivity?
- Can we find Kitaev spin liquid candidate materials?
- How does the magnetic field dependence on thermal conductivity change by including these interactions?
The scheme is the following:
1 Write the Hamiltonian in fermionic language
2 Introduce Majorana fermions
3 Perform a 2D Fourier transform
4 Bogoliubov diagonalization

Thank you!

