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Kitaev’s Honeycomb Hamiltonian

H = −Jx
∑

x−links
σxj σ

x
k − Jy

∑

y−links
σyj σ

y
k − Jz

∑

z−links
σzjσ

z
k

relies on a quasidiagonal matrix formalism (see Appendix C), which is similar to, but more
elementary than, noncommutative geometry. It can also be applied to disordered systems.

Furthermore, we find that there are actually 16 (8 Abelian and 8 non-Abelian) types of
vortex-fermion statistics, which correspond to different values of ν mod 16. Only three of them
(for ν = 0,±1) are realized in the original spin model. We give a complete algebraic description
of all 16 cases, see tables on pages 30, 41, and 42.

1 The model

We study a spin-1/2 system in which spins are located at the vertices of a honeycomb lattice,
see Fig. 3a. This lattice consists of two equivalent simple sublattices, referred to as “even” and
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Figure 3: Three types of links in the honeycomb lattice.

“odd” (they are shown by empty and full circles in the figure). A unit cell of the lattice contains
one vertex of each kind. Links are divided into three types, depending on their direction (see
Fig. 3b); we call them “x-links”, “y-links”, and “z-links”. The Hamiltonian is as follows:

H = −Jx
∑

x-links

σxj σ
x
k − Jy

∑

y-links

σyjσ
y
k − Jz

∑

z-links

σzjσ
z
k, (4)

where Jx, Jy, Jz are model parameters.
Let us introduce a special notation for the individual terms in the Hamiltonian:

Kjk =





σxj σ
x
k , if (j, k) is an x-link;

σxj σ
y
k , if (j, k) is an y-link;

σxj σ
z
k, if (j, k) is an z-link.

(5)

Remarkably, all operators Kjk commute with the following operators Wp, which are associated
to lattice plaquettes (i.e., hexagons):

3
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1
6

5

4
p

z

z
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Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 = K12K23K34K45K56K61. (6)
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Deforming The Lattice
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Threading The Lattice

I. F. Al-Yousef Intro. to JW Solution to Kitaev Honeycomb Model KFUPM 3 / 16



Kitaev Honeycomb Model Diagonalization Extended Kitaev Honeycomb Model Thank you!

Jordan-Wigner Definition

σ+
ij = 2


∏

j′<j

∏

i′

σzi′j′



[∏

i′<i

σzi′j

]

︸ ︷︷ ︸
1D String

c†ij

σzij = 2c†ijcij − 1

σxij =
1

2

(
σ+
ij + σ−

ij

)

σyij =
i

2

(
σ−
ij − σ+

ij

)
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Example

We will now transform one part of the Hamiltonian as an example: Using:

σxij =
1

2

(
σ+
ij + σ−

ij

)

σxi,jσ
x
i+1,j =⇒ 1

4

(
σ+
i,jσ

+
i+1,j + σ+

i,jσ
−
i+1,j + σ−

i,jσ
+
i+1,j + σ−

i,jσ
−
i+1,j

)

Employing JW transformation:

=⇒ c†i,jc
†
i+1,j + c†i,jci+1,j − ci,jc

†
i+1,j − ci,jci+1,j

=⇒
(
c†i,j − ci,j

)(
c†i+1,j + ci+1,j

)
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After JW

(
c†i,j − ci,j

)(
c†i+1,j + ci+1,j

)
=⇒

(
c− c†

)
w

(
c† + c

)
b

H = Jx
∑

x−links

(
c− c†

)
w

(
c† + c

)
b
− Jy

∑

y−links

(
c† + c

)
b

(
c− c†

)
w

− Jz
∑

z−links

(
2c†c− 1

)
b

(
2c†c− 1

)
w

Quartic terms =⇒ c†bcbc
†
wcw
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Majorana Fermions

Majorana fermions obey these relations:

{Ai, Aj} = δij ; A† = A; A2 = 1

Defining new Majorana operators at each site:

Aw ≡
(
c− c†

)
w

i
; Bw ≡

(
c† + c

)
w

Ab ≡
(
c† + c

)
b
; Bb ≡

(
c− c†

)
b

i
The Hamiltonian reads:

H = −iJx
∑

x−links
AwAb + iJy

∑

y−links
AbAw + Jz

∑

z−links
BbBwAbAw
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Conserved Quantities

H = −iJx
∑

x−links
AwAb + iJy

∑

y−links
AbAw + Jz

∑

z−links
BbBwAbAw

The term BbBwAbAw is not quadratic, but luckily, there is a conserved quantity αr:

αr ≡ iBbBw

Since Bb/w is hermitian, and B2
b/w = 1, then Bb/w will have eigenvalues of ±1.

Moreover, Bb/w operators anti-commute with Ab/w operators, and consequently,
αr/i = Bb/wBb/w will commute with Ab/w operators.

{Bi, Aj} = 0; [BiBj , Ak] = 0; ijk ∈ {b, w}

H = −iJx
∑

x−links
AwAb + iJy

∑

y−links
AbAw − iJz

∑

z−links
αrAbAw
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Spinon Operators

We will replace αr quantities by their eigenvalue +1 which minimizes energy and
therefore corresponds to the ground state configuration. Next, we introduce a new
spinon excitation fermionic operator which lives on the middle of z-bonds, defined
as:

d ≡ Aw + iAb
2

; d† ≡ Aw − iAb
2

H = Jx
∑

r

(
d†r + dr

)(
d†r+êx + dr+êx

)
+ Jy

∑

r

(
d†r + dr

)(
d†r+êy + dr+êy

)

+ Jz
∑

r

(
2d†rdr − 1

)
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Fourier Transform
Now we apply a Fourier transform in 2-D, which is slightly different:

d†r =
1√
N

∑

q

d†qe
iq·r; dr =

1√
N

∑

q

dqe
−iq·r

The identity becomes: ∑

r

ei(q−q′)·r = Nδqq′

Summing over positive modes, the Hamiltonian will read:

H =
∑

q>0

[
ϵq(d

†
qdq − d−qd

†
−q) + i∆q(d

†
qd

†
−q − d−qdq)

]

=
∑

q>0

[
d†q d−q

] [ ϵq i∆q

−i∆q −ϵq

] [
dq
d†−q

]
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Fourier Transform
Here, we have used the short-hand notation.

∑

q

=⇒
∑

qx

∑

qy

;
∑

q>0

=⇒
∑

qx>0

∑

qy>0

ϵq = 2Jz − 2Jx cos qx − 2Jy cos qy

∆q = 2Jx sin qx + 2Jy sin qy

qi ≡ q · êi; i ∈ {x, y}
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Bogoliubov Diagonalization
We now consider a simple 2× 2 Hamiltonian of the form:

H =
∑

q

[
c†q c−q

] [α −iβ
iβ −α

]

︸ ︷︷ ︸
2×2

[
cq
c†−q

]

Then eigenvalues are given as:
∣∣H − ωqI

∣∣ =
∣∣∣∣
α− ωq −iβ
iβ −α− ωq

∣∣∣∣ = 0 =⇒ ωq = ±
√

α2 + β2

The unitary matrix U is:

U =




| |
V1 V2

| |


 =

[
uq ivq
ivq uq

]
; uq =

α+ ωq√
(α+ ωq)

2 + β2
; vq =

β√
(α+ ωq)

2 + β2
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Diagonalized Hamiltonian

H =
∑

q

[
d†q d−q

]
U †

︸ ︷︷ ︸[
η†q η−q

]
UhU †
︸ ︷︷ ︸
D

U

[
dq
d†−q

]

︸ ︷︷ ︸[
ηq η†−q

]T
The result is this following Hamiltonian in its eigenspace:

H =
∑

q

ωqη
†
qηq + E0

E0 = −1

2

∑

q

ωq; ωq =
√
ϵ2q +∆2

q
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Extended Kitaev Honeycomb Model
An extended Kitaev honeycomb model can be written as:

H = H1 +H2

H2 = −iK2

∑

(αβγ)

∑

⟨jkl⟩αβ

ϵ(αβγ)
(
σαj σ

α
k

) (
σβkσ

β
l

)
= K2

∑

(αβγ)

∑

⟨jkl⟩αβ

σαj σ
γ
kσ

β
l

Here, H1 is the original Kitaev honeycomb model, H2 includes the NNN interactions,
K2 is the NNN Kitaev coupling, ϵ(αβγ) is Levi-Civita symbol, and (αβγ) is a general
permutation of (xyz).
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Extended Kitaev Honeycomb Model
We define ⟨jkl⟩αβ to be the path consisting of the two bonds ⟨jk⟩α and ⟨kl⟩β

ZHANG, BATISTA, AND HALÁSZ PHYSICAL REVIEW RESEARCH 2, 023334 (2020)

The search for topological orders in such magnetic mate-
rials was fueled by the discovery of the Kitaev honeycomb
model [8], which realizes the C = 0 and C = ±1 topological
orders in an exactly solvable spin model on the honeycomb
lattice. Indeed, the bond-dependent Ising interactions of this
exactly solvable model were first proposed to emerge between
transition-metal ions in the d5 [12,13] and d7 [14,15] config-
urations as well as between rare-earth ions [16,17], and then
these proposals led to a wide range of honeycomb candidate
materials, including (Na,Li)2IrO3 [18–25], H3LiIr2O6 [26],
α-RuCl3 [27–35], Na3Co2SbO6 [36], and YbCl3 [37,38].
However, it should be emphasized that, while the original
Kitaev model only contains |C| � 1 topological orders, there
is no reason to believe that only these topological orders can
emerge in such honeycomb magnets.

In this work, we study an exactly solvable generalization
[39] of the Kitaev model that respects all symmetries of
the honeycomb lattice and realizes more than half of the
topological orders in Kitaev’s sixteenfold way, correspond-
ing to Majorana Chern numbers 0, ±1, ±2, ±3, ±4, and
±8. These topological orders contain both Abelian and non-
Abelian anyons with a rich variety of fusion and braiding
rules, and are experimentally distinguishable by their different
quantized values of the thermal Hall conductivity. For each
topological order, we use the exact solution of our model to
explicitly identify the anyon classes and verify their fusion
rules. In some cases, we find that lattice symmetry becomes
intertwined with anyon permutation symmetry, corresponding
to weak symmetry breaking [8], and gives rise to a “weak su-
persymmetry” in the excitation spectrum. Since the additional
four-spin interactions of our generalized Kitaev model arise
naturally from time-reversal-symmetric perturbations [39], in
the same way as the three-spin interactions in the original
Kitaev model arise from an external magnetic field, we believe
that the |C| > 1 topological orders described in this work
are likely to be realized in spin-orbit-coupled honeycomb
magnets, such as α-RuCl3.

II. LATTICE MODEL

We consider a generalization of the Kitaev spin model on
the honeycomb lattice,

H = H1 + H2 + H3, (1)

where the first term,

H1 = −K1

∑
α

∑
〈 jk〉α

σ α
j σα

k , (2)

is the pure Kitaev model [8] with Ising interactions between
the spin components σα along each α = {x, y, z} bond 〈 jk〉α
[see Fig. 1(a)], while the remaining two terms Hr with r =
2, 3 contain products of such Ising interactions along paths
consisting of r bonds each. If we define 〈 jkl〉αβ to be the path
consisting of the two bonds 〈 jk〉α and 〈kl〉β [see Fig. 1(b)],
then the second term reads

H2 = −iK2

∑
(αβγ )

∑
〈 jkl〉αβ

ε(αβγ )
(
σα

j σα
k

)(
σ

β

k σ
β

l

)

= K2

∑
(αβγ )

∑
〈 jkl〉αβ

σ α
j σ

γ

k σ
β

l , (3)

(c) (d)

l

j
k

l

(a)

x y

z
A

B
6

1

2
3

4

5

k
j

k

p

(b)

j

k
l

K1 K2

K3 K3

m
l

m

FIG. 1. Generalized Kitaev model. (a) Bond-dependent Ising
interactions of the K1 term corresponding to the pure Kitaev model:
the spin components σ x,y,z at neighboring honeycomb sites are
coupled along x (red), y (green), and z (blue) bonds, respectively.
The site-labeling convention around a plaquette p is also illustrated.
(b) Representative (orange) path 〈 jkl〉yx associated with the K2

term in Eq. (3). (c), (d) Representative (orange) paths 〈 jklm〉yzx

(c) and 〈 jklm〉yzy (d) associated with the K3 and K ′
3 terms in Eq. (4),

respectively. Spin interactions along these paths give rise to Majorana
hopping terms along the dashed arrows. Note that the K3 interactions
come in symmetry-related pairs (orange and blue) that correspond to
the same Majorana hopping term and may interfere constructively or
destructively. In general, sites in sublattice A (B) are marked by black
(white) dots.

where (αβγ ) is a general permutation of (xyz), and ε(αβγ )

is +1 (−1) for even (odd) permutations. Using analogous
notation, the third term then takes the form

H3 = −K3

∑
(αβγ )

∑
〈 jklm〉αβγ

(
σα

j σα
k

)(
σ

β

k σ
β

l

)(
σ

γ

l σγ
m

)

−K ′
3

∑
(αβγ )

∑
〈 jklm〉αβα

(
σα

j σα
k

)(
σ

β

k σ
β

l

)(
σα

l σα
m

)

= K3

∑
(αβγ )

∑
〈 jklm〉αβγ

σ α
j σ

γ

k σα
l σγ

m

−K ′
3

∑
(αβγ )

∑
〈 jklm〉αβα

σ α
j σ

γ

k σ
γ

l σα
m , (4)

where 〈 jklm〉αβγ and 〈 jklm〉αβα are paths consisting of
three bonds each [see Figs. 1(c) and 1(d)]. As it is clear
from our construction, the term Hr for general r contains
(r + 1)-spin interactions and thus breaks (preserves) time-
reversal symmetry for even (odd) r. We remark that the
term H2 was already introduced in Ref. [8] while the term
H3 was first considered in Ref. [39]. It is also important
to note that these two terms are respectively generated by

023334-2

Figure: Representative of the path ⟨jkl⟩yx associated with the K2 in H
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Research Questions
Will the model still be exactly solvable?
How does this impact thermal conductivity?
Can we find Kitaev spin liquid candidate materials?
How does the magnetic field dependence on thermal conductivity change by
including these interactions?

The scheme is the following:
1 Write the Hamiltonian in fermionic language
2 Introduce Majorana fermions
3 Perform a 2D Fourier transform
4 Bogoliubov diagonalization
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